

Introduction Reactor Experiments CFD Conclusions Future Work	Introduction
--	--------------

Introduction

- Problem Statement
 - Super Critical Water Gasification (SCWG) converts wet biomass/waste streams (more than 70 wt.% water) into medium calorific gas.
 - Rich in either Methane or Hydrogen
 - Availability of wet biomass in the Netherlands is approximately 15*10^6 tonnes/year
 - Energy potential of approximately **500 PJ** [Koppejan 2005]

• Biomass handling and feed preparation \rightarrow

Chemistry of supercritical gasification

Reactor design →

UNIVERSITY OF TWENTE.

Product gas upgrading \rightarrow

Introduction	Reactor	Experiments	CFD	Conclusions	Future Work
	L ,	l J	l		l .

Goal

- Development of the process of Supercritical Gasification of Wet Biomass
 - Look at chemical kinetics
 - Heat transfer
 - CO₂ capture
 - Come up with design rules for a continuous reactor design for Supercritical Gasification of Wet Biomass

Introduction	Reactor	Experiments	CFD	Conclusions	Future Work

Supercritical water

The benefits

- No drying of the wet biomass is necessary
- Complete miscibility of gases and organics
- Water acts both as solvent and as a reactant
- High hydrogen yield

Introduction	Reactor	Experiments	CFD	Conclusions	Future Work
--------------	---------	-------------	-----	-------------	-------------

Supercritical water

itbar.

Taxaa ka

T[°C]

UNIVERSITY OF TWENTE.

EXPERIMENTS

SCWG of Methanol: Experimental results

UNIVERSITY OF TWENTE.

Tau_res = 10 [min] Wt%_algae = 10 % P_start = 260 [bar]

8

EXPERIMENTS

SCWG of Micro Algae: Experimental results

9

Outline	Reactor	Experiments	<u>CFD</u>	Conclusions	Future Work	
CFD Research	goal					

- Determination of heat transfer characteristics of biomass gasification in supercritical water
 - What is the influence of large property variations on the heat transfer
 - Can this be described using a 1D modeling approach?
 - Is it necessary to use a 2D modeling approach?

10

	Outline	Reactor	Experiments	<u>CFD</u>	Conclusions	Future Work) F
(CFD	1D n	nodel				
This model is used to compare with the 2D model						Т Т	

Author(c)	Voar		6	0	D	Т.
Author(s)	rear	p [MPa]	[kg/m ² s]	[kW/m ²]	[mm]	[°C]
Bishop et al.	1964	23 - 28	650 - 3660	310 - 3460	2.5 - 5.1	282 - 52
Swenson et al.	1965	23 - 41	542 - 2150	200 - 2000	9.4	75 - 570
Yamagata et al.	1972	23 - 29	310 - 1830	120 - 930	7.5, 10	230 - 54
Aicher and Martin	1996	N/A	N/A	N/A	27,37	N/A
Mokry et al.	2011	24	200 - 1500	≤ 1250	10	320 - 40

hermal energy

Heat transfer model: Total energy Heat transfer model: Thermal energy Turbulence model: Low-Reynolds k-a

Heat transfer model: Total energy Turbulence model: Low-Reynolds k-c Water properties from IAPWS-IF97

Heat transfer model: Th

UNIVERSITY OF TWENTE.

Water properties from IAPWS-IF97

EOS PROGRESS MEETING

	γ	(
Outline	Reactor	Experiments	<u>CFD</u>	Conclusions	Future Work

Velocity profiles at a mass flux of 20 [kg/m².s]

Velocity profiles at a mass flux of 100 [kg/m².s]

Ou	tline	Reactor	Experiments	<u>CFD</u>	Conclusions	Future Work

Velocity profiles at a mass flux of 150 [kg/m².s]

Outline	Reactor	Experiments	CFD	Conclusions	Future Work

Velocity profiles at a mass flux of 200 [kg/m².s]

	γ	γ			
Outlin	e Reactor	Experiments	<u>CFD</u>	Conclusions	Future Work

Velocity & temperature profiles at a mass flux of 200 [kg/m².s]

UNIVERSITY OF TWENTE.

EOS PROGRESS MEETING

UNIVERSITY OF TWENTE.

Introduction	Reactor	Experiments	CFD	Conclusions	Future Work
(l d	ι.	L .	l j

Conclusions

- A high throughput screening reactor for wet biomass is developed and tested.
- A 2D model for heat transfer to sub- and supercritical water is developed.
- The 2D models is validated using a dedicated experiment.
 This work is in progress!

UNIVERSITY OF TWENTE.